Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere
نویسندگان
چکیده
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
منابع مشابه
Thioether-ligated iron(II) and iron(III)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere.
The non-heme iron complexes, [Fe(II)(N3PySR)(CH3CN)](BF4)2 () and [Fe(II)(N3Py(amide)SR)](BF4)2 (), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The ...
متن کاملSynthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Ruthenium(II) Complexes Containing Phenylcyanamide Ligands and Effect of the Inner- Sphere on the Ru-NCN Chromophore
[Ru(terpy)(bpy)(L)]PF6 complexes, where terpy is 2,2΄:6′,2″– terpyridine, bpy is 2,2΄ - bipyridine and L is monoanions of 4 - bromophenylcyanamide (4 - Brpcyd), 4-methoxyphenylcyanamide (4 - MeOPcyd), 2, 4 - dibromophenylcyanamide (2,4 - Br2pcyd), 2,4-dimethylphenylcyanamide (2,4 - Me2pcyd), 2 - methylphenylcyanamide (2 ...
متن کاملSynthesis, Characterization, and Reactivity of Cobalt ACHTUNGTRENNUNG(III)–Oxygen Complexes Bearing a Macrocyclic N-Tetramethylated Cyclam Ligand
Oxygen-coordinating metal species, such as metal–peroxo, –hydroperoxo, and –oxo complexes (Scheme 1), have been frequently invoked as reactive intermediates in the catalytic cycles of dioxygen activation by metalloenzymes, such as heme and nonheme iron monooxygenases and copper-containing enzymes. In biomimetic studies, synthetic analogues of these active oxygen intermediates have been intensiv...
متن کاملSynthesis, Spectral, Biological and Theoretical Investigation of Some New Sn (IV) Complexes with Schiff Base Ligands Containing NNOS Coordination Sphere
New tin (IV) complexes of empirical formula, [Cl2 Me2 Sn(H2 L)1-3], where ((H2 L)1-3: Methyl-2- {[1-methyl-2-(2-hydroxy-3-methoxyphenyl)methylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate [H2cd3OMesalMeen], Methyl-2-{[1-methyl-2-(2-hydroxy-4-methoxyphenyl)methylidynenitrilo]ethyl}amino-1-cyclopentenedithiocar-boxylate, [H2 cd4OMesalMeen], Methyl-2-{[1-methyl-2-(2-hydroxy-5-methoxyphe...
متن کاملThe Study on the Reduction of the Viscosity of Transported Heavy Crude Oil by Fe(II) and Fe(III) Complexes with Phthalic Acid
The coordination compounds of Fe (II) and Fe(III) with phthalic acid were synthesized. The compounds were studied by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), and IR spectroscopy. It has been established that, regardless of the oxidative number of iron, the synthesis products have the same chemical composition and chemical formula - [Fe2(o-C6H4...
متن کامل